

The Lattix Approach

Design Rules to Manage Software Architecture

Whitepaper

December 2004-7

Copyright 2004 Lattix, Inc. All rights reserved

 Design Rules - 2 - Copyright 2004-7 Lattix, Inc. All rights reserved

Introduction

The Lattix approach uses a DSM to represent the architecture of software systems.

This approach leads to a hierarchical decomposition of the software system and the

use of a DSM grid to represent the dependencies between subsystems. In the past,

DSMs have been used to capture and represent architectures; Lattix Dependency

Model has extended this usage to allow architectural enforcement. This is done

through Design Rules.

Design Rules allow us to tackle one of the thorniest problems in software. It has

frequently been noted that software begins to degrade over successive revisions. A

key reason behind this common phenomenon is the inability to communicate and

enforce architectural intent. Over successive revisions, changes to software no longer

adhere to the original architecture. Often, new developers change things in

unintended ways. These changes are necessary for the evolution of the software

system to support new capabilities. However, the changes made to accomplish this

are made without either a clear understanding of the current architecture or a clear
understanding of how the architecture should evolve to support those changes.

As will be seen in this paper, the DSM grid itself provides a powerful representation

for setting and visualizing design rules. Further, the grid makes it easy to pinpoint
violations of design rules and to understand where the violations come from.

What are Design Rules?

Design Rules are a way to specify the allowed nature of the relationships between

various subsystems. This specification is an important part of the Lattix Dependency

Model for formalizing the architecture of a software system. Once these rules have

been codified, newer versions of the software can be tested to enforce these rules.
These rules serve two important purposes:

1. They flag architectural errors that developers might make during routine

development. It is these errors which erode the integrity of the architecture over

time. Frequently these errors are a result of changes made to software systems

for routine bug fixes and minor improvements.

2. They capture critical changes to the architecture that might necessitate changes

to the system decomposition or to how subsystems interact with each other. By

forcing the architect to come up with new design rules when such changes

become necessary they make architectural evolution explicit.

Lattix LDM is an application that allows architects and developers to specify design

rules and then to monitor the evolution of the system with respect to conformance to

those rules.

 Design Rules - 3 - Copyright 2004-7 Lattix, Inc. All rights reserved

Specifying Design Rules

Rules are Inherited

Suppose there is a System S, which has been decomposed into the following
subsystems:

S = S1 + S2 + … + SN

Consider the following rule:

S2 can-use S1

This rule is applied to the subsystem S2. It says that the subsystem S2 is allowed to

depend on the subsystem S1. When rules are applied to a subsystem, those rules are

generally inherited by the children of that subsystem. Therefore, all subsystems

which compose S2 are allowed to depend on subsystem S1. Said another way, all
descendents of S2 are allowed to depend on all descendents of S1.

A design rule normally consists of three parts: (1) source, (2) verb, and (3) target.

In the preceding example, S2 is the source, can-use is the verb, and S1 is the target.

Now consider another rule:

S1 cannot-use S2

The rule says that the subsystem S1 is not allowed to depend on the subsystem S2.

This means that no subsystem within the S1 subsystem tree is allowed to depend on
S2.

This technique allows a simple enforcement of a common design paradigm for

software systems: A software system is typically decomposed into subsystems which

are layered. For instance, S1 might represent the framework of the application while

S2 might represent the application business logic. These rules would then represent

the common intuition that the application’s framework should not depend on its

business logic while the business logic is certainly expected to depend on the

services provided by the framework. Enforcement of these rules allows multiple

business applications to use a common application infra-structure. Such layering also
simplifies testing by enabling independent testing of lower layers.

Rules are Evaluated in Sequence

Rules are evaluated in sequence and can be over-ridden. Assume that the subsystem

S1 and S2 can be further decomposed as follows:

S1 = S11 + S12 + … + S1N1

S2 = S21 + S22 + … + S2N2

Based on our first rule, we know that S11, S12, .. S1N1 are not allowed to use S2. Upon

examining the current architecture, the architect finds that S11 actually does depends

on S21. This violates the architectural intent. In software, like most other pragmatic

domains, it is entirely possible that the cost of change is excessive; it is also not

hard to conceive that this dependency is actually necessary for reasons of

performance or simplicity. The architect can then specify the following additional
rule:

 Design Rules - 4 - Copyright 2004-7 Lattix, Inc. All rights reserved

 S11 can-use S21

This rule explicitly over-rides a part of the rule that S11 inherited from S1. LDM

applies rules in sequence. When the subsystem S11 is evaluated, it is evaluated for
the following rules:

 S11 cannot-use S2 (this rule is inherited from S1)

 S11 can-use S21

By evaluating the rules in sequence, parts of the rule can be over-ridden. Rules can

be marked as exceptions. This allows architects to indicate rules created to accept

architectural violations which might exist for reasons which could be historical, or

related to performance or to scheduling. The architect may also attach a rationale for
rules.

Rules can be applied to External Systems

The Lattix Dependency Model also allows design rules to specify the external libraries
that subsystems can use. Consider the following example:

S1 can-use org.apache.**

This rule applies to all subsystems within the S1 subsystem tree. All of them are

allowed to use external types whose names start with org.apache. This provides a

technique to control the proliferation of external library usage. From a theoretical

perspective, this is not very different from rules between subsystems that were

previously just described. However, from a practical standpoint it has great benefits

as it is neither useful nor practical to build a DSM which includes the system being
analyzed and all its supporting external libraries and its operating environment.

Rules can be qualified

The Lattix Dependency Model also allows rules to be qualified by dependency kind

and atom kind. Each Dependency is of a specific kind based on the type of project.

For instance, Java has dependency kinds of type inheritance (extends, implements),

method invocation, data member reference etc while .NET has additional dependency
kinds associated with .NET constructs such as Events and Properties.

Each leaf node of the DSM tends to be associated with an atom which corresponds to

the types of atoms associated with a project. For instance, the atoms in a Java

project are of kind: classes, interfaces, methods and data members. This means that

it is possible to create rules such as enforcing access from one subsystem to another

through interfaces.

 Design Rules - 5 - Copyright 2004-7 Lattix, Inc. All rights reserved

Using a DSM Grid to Represent Design Rules

The DSM grid provides a powerful way to visually represent the rules. We use green

and yellow triangles at different vertices of the cell to indicate whether a dependency

is permitted. For a can-use rule, the cell has a green triangle in the upper left

vertex; and, for a cannot-use rule, the cell has a yellow triangle in the lower left

vertex. If there is a dependency in a cell governed by a cannot-use rule, we show it
with a red triangle on yet another vertex of the cell (upper right).

Figure 1: Dependencies and Rules in the DSM Grid

The use of a DSM for representing design rules illustrates yet another benefit of the

DSM grid. Every element of the grid represents design intent. The traditional

representation which relies on directed graphs becomes cluttered and

incomprehensible when used just for showing dependencies. Using a directed graph

to show design intent would be even more difficult as a line segment would be

required between every subsystem to every other subsystem.

Lattix further improves upon this view by allowing users to click on any cell to see

the actual dependency, rule and rule violation. The grid navigation is simple and

intuitive. It is simple for users to drill down into any subsystem to identify exactly
which subsystem is responsible for violating the design rule.

Green Triangle Indicates that
Dependency is allowed Yellow Triangle Indicates

that Dependency is not
allowed

Red Triangle
Indicates that

Design Rule has
been violated

 Design Rules - 6 - Copyright 2004-7 Lattix, Inc. All rights reserved

Example: Applying Design Rules to Apache ANT

Ant is a one of the most popular build utility. It allows development teams to

automate the build process for activities such as compiling, building jar files, unit

testing etc. The architecture of Ant has been specifically developed so that Ant tasks

are components of the Ant infrastructure. This has permitted a large number of

disparate developers to work in parallel to create the wide variety of things (tasks)

that Ant can do. The clean separation between the infrastructure and tasks has also

added to the robustness of Ant because bugs in the tasks have a minimal affect the
rest of the system.

A Dependency Model was constructed for Ant Version 1.4.1. First the system

decomposition of the Ant application was done. This was done by noting that a key

design decision behind Ant’s architecture was to separate the Ant framework from

Ant’s tasks. Tasks depend upon the framework but the framework does not depend

on tasks. This allows tasks to be added and tested independently. It also reduces the

risk to the entire application because of bugs that might be introduced in newly
added or modified tasks.

Figure 2: Ant Version 1.4.1 with dependencies and rules

Figure 2 shows the DSM for Ant Version 1.4.1. It has been decomposed into three

subsystems – util, ant, taskdefs. The dependencies between various subsystems

reflect the hierarchical layering that actually exists within the implementation. We

have added rules to enforce this intended layering. The cells with yellow triangles

indicate areas where dependencies are not permitted.

The following rules were added (from an initial state where every subsystem is
allowed to use any other subsystem):

 util cannot-use ant

 Design Rules - 7 - Copyright 2004-7 Lattix, Inc. All rights reserved

 util cannot-use taskdefs

 ant cannot-use taskdefs

Note that these 3 rules now govern the cells above the block diagonal, and those cell

all show a yellow indicator in the lower left corner, signifying a cannot use rule
applies.

As a next step we applied this dependency model to Ant Version 1.5.1.

Figure 3: Ant Version 1.5.1 (has Rule Violations)

Notice that the architecture is largely intact. However, the ant framework now has

dependencies on the condition subsystem in taskdefs; these dependencies are clearly
identified by the cells in the grid with the red triangles in the upper right corner.

LDM allows you to move subsystems from one place to another. We moved the

condition task from taskdefs to ant. This removed the current violations but

introduced a new violation from the condition tasks to taskdefs. This points to the
need for further refactoring to maintain the architectural intent.

We also applied the dependency model to Ant Version 1.6.1. This now showed

additional violations of the intended layering. They illustrate how a design begins to

degrade over time. Ant is a popular application which is scrutinized by hundreds of

developers. Most applications that are written today will never receive that same

 Design Rules - 8 - Copyright 2004-7 Lattix, Inc. All rights reserved

scrutiny. They are likely to degrade much more quickly unless the architectural
intent is clearly codified and enforced with design rules.

